Mechanical engineering education handbook

Book Cover
Publisher:
Nova Science Publishers, Inc
Pub. Date:
[2020]
Language:
English
Description
"This book is believed to be the first to specifically address mechanical engineering education. It is divided into three sections : pedagogy, curriculum, and future. The pedagogy section contains seven chapters on various aspects of enhancing student learning. Chapter one concerns research regarding mechanical engineering (ME) students' learning preferences. ME students are much more visual and prefer more problem solving compared to the general population. Chapter two is on leveraging technology to elevate pedagogy. The authors show many different ways of using technologies, such as the use of iMovie and Doceri, to enhance the practice of teaching. Chapter three on mastery-based learning concerns assessing students on what skills they can do well rather than almost solely on how well they do on exams. Chapter four discusses how team-based assignments can be used to meet multiple student outcomes. Examples are given for a fluid mechanics lab and a thermodynamics class. Chapter five describes how team-based active learning can be used to expose students to the aerospace design process and industry practices. Chapter six shows how a problem-based learning approach was converted to an entrepreneurially minded learning approach in a mechatronics design course. The application of the Kern Entrepreneurial Engineering Network (KEEN) framework showed a significant increase in the students' entrepreneurial mindset. Chapter seven recommends the inclusion of open-ended problems in courses at all levels to help prepare students for real-world problems, which often have multiple possible correct solutions. Section two on curriculum has five chapters more specifically on ME courses and programs. Chapter eight advocates incorporating more hands-on design into the ME curriculum because of its importance in practice. Chapter nine shows an example of how an entrepreneurial mindset can be fostered and developed in an engineering experimentation course. Chapter ten demonstrates how research has shown that replacing thermodynamic tables, which students often struggle to use, with thermodynamic property charts can help students form better mental models. Chapter eleven discusses the use of active learning techniques to more effectively incorporate the teaching of materials in the ME curriculum. Chapter twelve considers how reverse engineering can be incorporated into the ME curriculum. While original design is incorporated into the ME curriculum, reverse engineering of existing designs can be a valuable addition that can help prepare MEs for professional practice. Section three has two chapters related to the future. Chapter thirteen discusses how ME students can be more effectively prepared for their future in the industry, not so much by changing the curriculum, but by changing the teaching approach. Some examples include less theory and more practice, improved problem solving and simulating the industrial work environment. The authors include those who work or have worked full time in industry and work part time or full time in academia, as well as two relatively recent ME graduates. The last chapter discusses possible future areas of research for improving mechanical engineering education. Those areas include, for example, improved course content, curriculum, communication, assessment, virtual reality, codes and standards, multimedia and innovation/entrepreneurship"--
More Like This
More Copies In Prospector
Loading Prospector Copies...
More Details
ISBN:
9781536177923
Staff View

Grouping Information

Grouped Work IDc4501087-b2f6-a46c-07ba-f336b8ff33b7
Grouping Titlemechanical engineering education handbook
Grouping Authorcharles e baukal
Grouping Categorybook
Grouping LanguageEnglish (eng)
Last Grouping Update2024-05-07 20:57:32PM
Last Indexed2024-05-16 01:51:40AM

Solr Fields

accelerated_reader_point_value
0
accelerated_reader_reading_level
0
auth_author2
Baukal, Charles E., Jr., 1959-
author2-role
Baukal, Charles E.,Jr.,1959-editor
display_description
"This book is believed to be the first to specifically address mechanical engineering education. It is divided into three sections : pedagogy, curriculum, and future. The pedagogy section contains seven chapters on various aspects of enhancing student learning. Chapter one concerns research regarding mechanical engineering (ME) students' learning preferences. ME students are much more visual and prefer more problem solving compared to the general population. Chapter two is on leveraging technology to elevate pedagogy. The authors show many different ways of using technologies, such as the use of iMovie and Doceri, to enhance the practice of teaching. Chapter three on mastery-based learning concerns assessing students on what skills they can do well rather than almost solely on how well they do on exams. Chapter four discusses how team-based assignments can be used to meet multiple student outcomes. Examples are given for a fluid mechanics lab and a thermodynamics class. Chapter five describes how team-based active learning can be used to expose students to the aerospace design process and industry practices. Chapter six shows how a problem-based learning approach was converted to an entrepreneurially minded learning approach in a mechatronics design course. The application of the Kern Entrepreneurial Engineering Network (KEEN) framework showed a significant increase in the students' entrepreneurial mindset. Chapter seven recommends the inclusion of open-ended problems in courses at all levels to help prepare students for real-world problems, which often have multiple possible correct solutions. Section two on curriculum has five chapters more specifically on ME courses and programs. Chapter eight advocates incorporating more hands-on design into the ME curriculum because of its importance in practice. Chapter nine shows an example of how an entrepreneurial mindset can be fostered and developed in an engineering experimentation course. Chapter ten demonstrates how research has shown that replacing thermodynamic tables, which students often struggle to use, with thermodynamic property charts can help students form better mental models. Chapter eleven discusses the use of active learning techniques to more effectively incorporate the teaching of materials in the ME curriculum. Chapter twelve considers how reverse engineering can be incorporated into the ME curriculum. While original design is incorporated into the ME curriculum, reverse engineering of existing designs can be a valuable addition that can help prepare MEs for professional practice. Section three has two chapters related to the future. Chapter thirteen discusses how ME students can be more effectively prepared for their future in the industry, not so much by changing the curriculum, but by changing the teaching approach. Some examples include less theory and more practice, improved problem solving and simulating the industrial work environment. The authors include those who work or have worked full time in industry and work part time or full time in academia, as well as two relatively recent ME graduates. The last chapter discusses possible future areas of research for improving mechanical engineering education. Those areas include, for example, improved course content, curriculum, communication, assessment, virtual reality, codes and standards, multimedia and innovation/entrepreneurship"--
format_category_ccu
eBook
format_ccu
eBook
id
c4501087-b2f6-a46c-07ba-f336b8ff33b7
isbn
9781536177923
last_indexed
2024-05-16T07:51:40.294Z
lexile_score
-1
literary_form
Non Fiction
literary_form_full
Non Fiction
primary_isbn
9781536177923
publishDate
2020
publisher
Nova Science Publishers, Inc
recordtype
grouped_work
subject_facet
Electronic books
Génie mécanique -- Étude et enseignement
Mechanical engineering -- Study and teaching
title_display
Mechanical engineering education handbook
title_full
Mechanical engineering education handbook
title_short
Mechanical engineering education handbook
topic_facet
Étude et enseignement
Génie mécanique
Mechanical engineering
Study and teaching

Solr Details Tables

item_details

Bib IdItem IdShelf LocCall NumFormatFormat CategoryNum CopiesIs Order ItemIs eContenteContent SourceeContent URLDetailed StatusLast CheckinLocation
fortlewisebscoebooksub:on1156414185on1156414185Fort Lewis Subscription eBook (EBSCO)Online Fort Lewis Subscription eBook (EBSCO)eBookeBook1falsetrueFort Lewis Subscription eBook (EBSCO)https://fortlewis.idm.oclc.org/login?url=https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=2500046Available OnlineFort Lewis Subscription eBook (EBSCO)
ebscoccu:on1156414185on1156414185Ebsco (CCU)Online Ebsco (CCU)eBookeBook1falsetrueEbsco (CCU)http://ezproxy.ccu.edu/login?url=https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=2500046Available OnlineEbsco (CCU)

record_details

Bib IdFormatFormat CategoryEditionLanguagePublisherPublication DatePhysical DescriptionAbridged
fortlewisebscoebooksub:on1156414185eBookeBookEnglishNova Science Publishers, Inc[2020]1 online resource.
ebscoccu:on1156414185eBookeBookEnglishNova Science Publishers, Inc[2020]1 online resource.

scoping_details_ccu

Bib IdItem IdGrouped StatusStatusLocally OwnedAvailableHoldableBookableIn Library Use OnlyLibrary OwnedHoldable PTypesBookable PTypesLocal Url
ebscoccu:on1156414185on1156414185Available OnlineAvailable Onlinefalsetruefalsefalsefalsefalse