The Langevin equation: with applications to stochastic problems in physics, chemistry and electrical engineering
(eBook)

Book Cover
Published:
Singapore ; Hackensack, N.J. : World Scientific Pub. Co., ©2012.
Format:
eBook
Edition:
3rd ed.
ISBN:
9789814355674, 9814355674
Physical Desc:
1 online resource (xxii, 827 pages) : illustrations (some color).
Status:
Ebsco (CCU)
Description

This volume is the third edition of the first-ever elementary book on the Langevin equation method for the solution of problems involving the translational and rotational Brownian motion of particles and spins in a potential highlighting modern applications in physics, chemistry, electrical engineering, and so on. In order to improve the presentation, to accommodate all the new developments, and to appeal to the specialized interests of the various communities involved, the book has been extensively rewritten and a very large amount of new material has been added. This has been done in order to present a comprehensive overview of the subject emphasizing via a synergetic approach that seemingly unrelated physical problems involving random noise may be described using virtually identical mathematical methods in the spirit of the founders of the subject, viz., Einstein, Langevin, Smoluchowski, Kramers, etc. The book has been written in such a way that all the material should be accessible both to an advanced researcher and a beginning graduate student. It draws together, in a coherent fashion, a variety of results which have hitherto been available only in the form of scattered research papers and review articles.

Copies
Ebsco (CCU)
More Like This
Citations
APA Citation (style guide)

Coffey, W., & Kalmykov, Y. P. (2012). The Langevin equation: with applications to stochastic problems in physics, chemistry and electrical engineering. 3rd ed. Singapore ; Hackensack, N.J., World Scientific Pub. Co.

Chicago / Turabian - Author Date Citation (style guide)

Coffey, William, 1948- and Yu. P. Kalmykov. 2012. The Langevin Equation: With Applications to Stochastic Problems in Physics, Chemistry and Electrical Engineering. Singapore ; Hackensack, N.J., World Scientific Pub. Co.

Chicago / Turabian - Humanities Citation (style guide)

Coffey, William, 1948- and Yu. P. Kalmykov, The Langevin Equation: With Applications to Stochastic Problems in Physics, Chemistry and Electrical Engineering. Singapore ; Hackensack, N.J., World Scientific Pub. Co, 2012.

MLA Citation (style guide)

Coffey, William and Yu. P Kalmykov. The Langevin Equation: With Applications to Stochastic Problems in Physics, Chemistry and Electrical Engineering. 3rd ed. Singapore ; Hackensack, N.J., World Scientific Pub. Co, 2012.

Note! Citation formats are based on standards as of July 2022. Citations contain only title, author, edition, publisher, and year published. Citations should be used as a guideline and should be double checked for accuracy.
More Copies In Prospector
Loading Prospector Copies...
More Details
Language:
English

Notes

Bibliography
Includes bibliographical references and index.
Description
This volume is the third edition of the first-ever elementary book on the Langevin equation method for the solution of problems involving the translational and rotational Brownian motion of particles and spins in a potential highlighting modern applications in physics, chemistry, electrical engineering, and so on. In order to improve the presentation, to accommodate all the new developments, and to appeal to the specialized interests of the various communities involved, the book has been extensively rewritten and a very large amount of new material has been added. This has been done in order to present a comprehensive overview of the subject emphasizing via a synergetic approach that seemingly unrelated physical problems involving random noise may be described using virtually identical mathematical methods in the spirit of the founders of the subject, viz., Einstein, Langevin, Smoluchowski, Kramers, etc. The book has been written in such a way that all the material should be accessible both to an advanced researcher and a beginning graduate student. It draws together, in a coherent fashion, a variety of results which have hitherto been available only in the form of scattered research papers and review articles.
Staff View
Grouped Work ID:
5423beac-d5d2-5044-a3f9-a5c5ccdeef01
Go To GroupedWork

Record Information

Last File Modification TimeMay 07, 2024 09:07:48 PM
Last Grouped Work Modification TimeMay 07, 2024 08:57:32 PM

MARC Record

LEADER10815cam a2200685Ma 4500
001ocn840254741
003OCoLC
00520240426145527.0
006m     o  d        
007cr cuu|||uu|||
008091123s2012    si a    ob    001 0 eng d
040 |a WSPC|b eng|e pn|c STF|d N$T|d CDX|d YDXCP|d DEBSZ|d OCLCQ|d AU@|d OCLCQ|d OCLCF|d OCLCQ|d AGLDB|d MERUC|d OCLCQ|d ZCU|d U3W|d VTS|d ICG|d INT|d OCLCQ|d STF|d OCLCQ|d LEAUB|d DKC|d JBG|d OCLCQ|d OCLCO|d OCLCQ|d OCLCO|d OCLCL
019 |a 880910153|a 1086490003
020 |a 9789814355674|q (electronic bk.)
020 |a 9814355674|q (electronic bk.)
020 |z 9789814355667
0291 |a AU@|b 000052918544
0291 |a AU@|b 000054193609
0291 |a DEBBG|b BV043070218
0291 |a DEBBG|b BV044175576
0291 |a DEBSZ|b 384346138
0291 |a DEBSZ|b 421256044
0291 |a DEBSZ|b 454998589
035 |a (OCoLC)840254741|z (OCoLC)880910153|z (OCoLC)1086490003
050 4|a QA274.23
072 7|a MAT|x 029000|2 bisacsh
08204|a 519.2|2 22
049 |a MAIN
1001 |a Coffey, William,|d 1948-|1 https://id.oclc.org/worldcat/entity/E39PCjtWmyQVhWMJymGg8dwtJC
24514|a The Langevin equation :|b with applications to stochastic problems in physics, chemistry and electrical engineering /|c William T. Coffey, Yuri P. Kalmykov.
250 |a 3rd ed.
260 |a Singapore ;|a Hackensack, N.J. :|b World Scientific Pub. Co.,|c ©2012.
300 |a 1 online resource (xxii, 827 pages) :|b illustrations (some color).
336 |a text|b txt|2 rdacontent
337 |a computer|b c|2 rdamedia
338 |a online resource|b cr|2 rdacarrier
4901 |a World Scientific series in contemporary chemical physics ;|v v. 27
504 |a Includes bibliographical references and index.
5050 |a Ch. 1. Historical background and introductory concepts. 1.1. Brownian motion. 1.2. Einstein's explanation of Brownian movement. 1.3. The Langevin equation. 1.4. Einstein's method. 1.5. Essential concepts in statistical mechanics. 1.6. Probability theory. 1.7. Application to the Langevin equation. 1.8. Wiener process. 1.9. The Fokker-Planck equation. 1.10. Drift and diffusion coefficients. 1.11. Solution of the one-dimensional Fokker-Planck equation. 1.12. The Smoluchowski equation. 1.13. Escape of particles over potential barriers: Kramers' theory. 1.14. Applications to the theory of Brownian movement in a potential. 1.15. Rotational Brownian motion: application to dielectric relaxation. 1.16. Superparamagnetism: magnetic after-effect. 1.17. Brown's treatment of Néel relaxation. 1.18. Asymptotic expressions for the Néel relaxation. 1.19. Ferrofluids. 1.20. Depletion effect in a biased bistable potential. 1.21. Stochastic resonance. 1.22. Anomalous diffusion -- ch. 2. Langevin equations and methods of solution. 2.1. Criticisms of the Langevin equation. 2.2. Doob's interpretation of the Langevin equation. 2.3. Nonlinear Langevin equation with a multiplicative noise term: Itô and Stratonovich rules. 2.4. Derivation of differential-recurrence relations from the one-dimensional Langevin equation. 2.5. Nonlinear Langevin equation in several dimensions. 2.6. Average of the multiplicative noise term in the Langevin equation. 2.7. Methods of solution of differential-recurrence relations arising from the nonlinear Langevin equation. 2.8. Linear response theory. 2.9. Integral relaxation theory. 2.10. Linear response theory for systems with dynamics governed by single-variable Fokker-Planck equations. 2.11. Smallest non-vanishing eigenvalue: continued-fraction approach. 2.12. Effective relaxation time. 2.13. Evaluation of the dynamic susceptibility using [symbol], [symbol] and [symbol]. 2.14. Nonlinear transient response of a Brownian particle -- ch. 3. Brownian motion of a free particle and a harmonic oscillator. 3.1. Introduction. 3.2. Ornstein-Uhlenbeck theory of Brownian motion. 3.3. Stationary solution of the Langevin equation: the Wiener-Khinchin theorem. 3.4. Application to phase diffusion in MRI. 3.5. Rotational Brownian motion of a fixed-axis rotator. 3.7. Torsional oscillator model: example of the use of the Wiener integral -- ch. 4. Rotational Brownian motion about a fixed axis in N-fold cosine potentials. 4.1. Introduction. 4.2. Langevin equation for rotation about a fixed axis. 4.3. Longitudinal and transverse effective relaxation times. 4.4. Polarizabilities and relaxation times of a fixed-axis rotator with two equivalent sites. 4.5. Effect of a d.c. bias field on the orientational relaxation of a fixed-axis rotator with two equivalent sites.
5058 |a Ch. 5. Brownian motion in a tilted periodic potential: application to the Josephson tunneling junction. 5.1. Introduction. 5.2. Langevin equations. 5.3. Josephson junction: dynamic model. 5.4. Reduction of the averaged Langevin equation for the junction to a set of differential-recurrence relations. 5.5. Current-voltage characteristics. 5.6. Linear response to an applied alternating current. 5.7. Effective eigenvalues for the Josephson junction. 5.8. Linear impedance. 5.9. Spectrum of the Josephson radiation. 5.10. Nonlinear effects in d.c. and a.c. current-voltage characteristics. 5.11. Concluding remarks -- ch. 6. Translational Brownian motion in a double-well potential. 6.1. Introduction. 6.2. Characteristic times of the position correlation function. 6.3. Converging continued fractions for the correlation functions. 6.4. Two-mode approximation. 6.5. Stochastic resonance. 6.6. Concluding remarks -- ch. 7. Non-inertial rotational diffusion in axially symmetric external potentials: applications to orientational relaxation of molecules in fluids and liquid crystals. 7.1. Introduction. 7.2. Rotational diffusion in a potential: Langevin equation approach. 7.3. Brownian rotation in a uniaxial potential. 7.4. Brownian rotation in a uniform d.c. external field. 7.5. Nonlinear transient responses in dielectric and Kerr-effect relaxation. 7.6. Nonlinear dielectric relaxation of polar molecules in a strong a.c. electric field: steady-state response. 7.7. Concluding remarks -- ch. 8. Anisotropic non-inertial rotational diffusion in an external potential: application to linear and nonlinear dielectric relaxation and the dynamic Kerr effect. 8.1. Introduction. 8.2. Anisotropic non-inertial rotational diffusion of an asymmetric top in an external potential. 8.3. Application to dielectric relaxation. 8.4. Kerr-effect relaxation. 8.5. Concluding remarks -- ch. 9. Brownian motion of classical spins: application to magnetization relaxation in superparamagnets. 9.1. Introduction. 9.2. Brown's model: Langevin equation approach. 9.3. Magnetization relaxation in uniaxial superparamagnets. 9.4. Reversal time of the magnetization in superparamagnets with nonaxially symmetric potentials: escape-rate theory approach. 9.5. Magnetization relaxation in superparamagnets with non-axially symmetric anisotropy: matrix continued-fraction approach. 9.6. Nonlinear a.c. stationary response of superparamagnets. 9.7. Concluding remarks -- ch. 10. Inertial effects in rotational and translational Brownian motion for a single degree of freedom. 10.1. Introduction. 10.2. Inertial effects in nonlinear dielectric response. 10.3. Brownian motion of a fixed-axis rotator in a double-well potential. 10.4. Brownian motion of a fixed-axis rotator in an asymmetric double-well potential. 10.5. Brownian motion in a tilted periodic potential. 10.6. Translational Brownian motion in a double-well potential. 10.7. Concluding remarks.
5058 |a Ch. 11. Inertial effects in rotational diffusion in space: application to orientational relaxation in molecular liquids and ferrofluids. 11.1. Introduction. 11.2. Inertial rotational Brownian motion of a thin rod in space. 11.3. Rotational Brownian motion of a symmetrical top. 11.4. Inertial rotational Brownian motion of a rigid dipolar rotator in a uniaxial biased potential. 11.5. Itinerant oscillator model of rotational motion in liquids. 11.6. Application of the cage model to ferrofluids -- ch. 12. Anomalous diffusion and relaxation. 12.1. Discrete- and continuous-time random walks. 12.2. Fractional diffusion equation for the continuous-time random walk model. 12.3. Solution of fractional diffusion equations. 12.4. Characteristic times of anomalous diffusion. 12.5. Inertial effects in anomalous relaxation. 12.6. Barkai and Silbey's fractional kinetic equation. 12.7. Anomalous diffusion in a periodic potential. 12.8. Fractional Langevin equation. 12.9. Concluding remarks.
520 |a This volume is the third edition of the first-ever elementary book on the Langevin equation method for the solution of problems involving the translational and rotational Brownian motion of particles and spins in a potential highlighting modern applications in physics, chemistry, electrical engineering, and so on. In order to improve the presentation, to accommodate all the new developments, and to appeal to the specialized interests of the various communities involved, the book has been extensively rewritten and a very large amount of new material has been added. This has been done in order to present a comprehensive overview of the subject emphasizing via a synergetic approach that seemingly unrelated physical problems involving random noise may be described using virtually identical mathematical methods in the spirit of the founders of the subject, viz., Einstein, Langevin, Smoluchowski, Kramers, etc. The book has been written in such a way that all the material should be accessible both to an advanced researcher and a beginning graduate student. It draws together, in a coherent fashion, a variety of results which have hitherto been available only in the form of scattered research papers and review articles.
650 0|a Langevin equations.
650 0|a Brownian motion processes.
650 6|a Équations de Langevin.
650 6|a Processus de mouvement brownien.
650 7|a MATHEMATICS|x Probability & Statistics|x General.|2 bisacsh
650 7|a Brownian motion processes|2 fast
650 7|a Langevin equations|2 fast
7001 |a Kalmykov, Yu. P.
7102 |a World Scientific (Firm)
758 |i has work:|a The Langevin equation (Text)|1 https://id.oclc.org/worldcat/entity/E39PCGVFcdDhr9vyCBmQQ9XXtX|4 https://id.oclc.org/worldcat/ontology/hasWork
77608|i Print version:|z 9789814355667
830 0|a World Scientific series in contemporary chemical physics ;|v v. 27.
85640|u http://ezproxy.ccu.edu/login?url=https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=575426
938 |a Coutts Information Services|b COUT|n 25409846
938 |a EBSCOhost|b EBSC|n 575426
938 |a YBP Library Services|b YANK|n 10358317
94901|h 9|l cceb|s j|t 188|w EBSCO Academic : External
994 |a 92|b FCX